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I. Introduction

Mathematical modeling of the interactions of large, high-

voltage solar arrays with the space plasma in Low Earth Orbit (LEO)

has been conducted by the P.I. since 1984. An early series of

models sought to identify the main features of the electrical

response of a model solar array/power system to arcing at points of

negative bias on the array relative to the plasma potential (refs. 1-

4). In addition to characterizing array responses to various arcs,

this early work suggested that a description of the electrically

floating state of an array prior to an arc requires a correct

description of the plasma sheath that surrounds the array.

One approach to the treatment of the plasma sheath near a

solar array is contained in the two-fluid, warm plasma model (ref.

5). If magnetic fields are ignored, the plasma equations in this

model are the equations of continuity and of motion for the

electrons and the ions and Poisson's Equation connecting the

electron and ion charge densities with the electrostatic potential. In

three dimensions, for irrotational flows, these comprise five partial

differential equations in five scalar fields: the electron and ion

charge densities, the electron and ion velocity potentials and the

electrostatic potential.

An active solar array has a distribution of voltage bias

relative to plasma ground over its surface. Solar cell layouts

designed to minimize vxB forces necessitate that some points of

sharp voltage discontinuity will be present on the array. Points of

shape discontinuity, such as edges and corners, also occur. Proper

description of the sheath near such discontinuities can be expected
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to require that the sheath equations be solved in their multi-

dimensional form. Approximations based on one-dimensional

assumptions embedded in a sheath model are potential sources of
error.

In the limiting cases when surface bias voltages are either

low or high as compared with the electron and ion thermal energies

divided by the electron charge, the equations of the two-fluid,

warm plasma model yield the Debye (low bias) or Child-Langmuir

(high bias) approximations, respectively. A fully three-dimensional

treatment of the sheath equations for arbitrarily shaped and biased

objects is desirable but is difficult to achieve. However, some

insight to sheath structure can be gained by less ambitious

calculations. Herein we present calculations in two dimensions, for

special geometries and in the limiting, Debye and Child-Langmuir
approximations.

II. Previous Work

In the summer of 1987 the P.I. began a study of the electron

sheath near surfaces of a model high-voltage solar array (ref. 6).

An evaluation was conducted of the NASCAP/LEO computer model.

This is a three-dimensional model designed to calculate electrostatic

potential distributions, particle fluxes and floating conditions near

objects of chosen shape, composition and voltage biasing in LEO

(refs. 7-8). The model gives an extensive picture of the plasma
sheaths near voltage-biased structures.

Calculational features, possibly designed to make a three

dimensional model tractable, limit NASCAP LEO's descriptive power

somewhat. For some kinds of objects the model has rather low

resolution in crucial places. The biased object under study is

confined to a 17x17x33 pt. inner grid. The next outer grid has half

the resolution of the inner grid. Thus, to obtain the highest

resolution available for the sheath immediately above object

surfaces, the object must be kept well within the inner grid volume.

Few grid points can be deployed near fine surface features of the

object.
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NASCAP/LEO contains an essentially one-dimensional
treatment of the relation between the electrostatic potential,
velocity and charge density. This permits the electrostatic
potential to be calculated from Poisson's Equation directly, which is
a great convenience. Particle fluxes are calculated using particle-
tracking once the electrostatic potential has been calculated. This
treatment is likely to be deficient near multi-dimensional features
such as discontinuities and does not take particle-particle
interactions into account in the particle flux calculations.

A plasma fluid model should be free of the above limitations
provided that it's equations are solved in their true multi-
dimensional form and symmetries are imposed that permit use of a
higher resolution grid. To test this, four plasma sheath problems
were defined for study by the P.I. in 1987. In each of two
geometries (Fig. 1), an equipotential, rectangular bar and a sheet of
alternating-bias strips, and in each of the two limiting
approximations, Debye and Child-Langmuir, the equations of the
warm plasma model were developed and programmed for
computer solution in two dimensions. During the summer of 1988
preliminary solutions of the Debye equations were obtained (ref. 9).
During the summer of 1989 final Debye solutions were obtained,
comparisons to NASCAP/LEO results made and work on the Child-
Langmuir cases begun.
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GEOMETRIES: Fig. 1.a is a cross-section taken perpendicular to a
plane containing strips of voltages alternately Vo volts above and
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below Voo. The strips run from plus to minus infinity in the z
direction and, side by side, to plus and minus infinity in the x
direction. Shown is a region half a strip wide on either side of the
origin. Fig. 1.b shows one quadrant of a cross-section through a
rectangular bar at voltage Voo. The bar extends to plus and minus
infinity in the z direction.

III. Work Conducted in 1989 under NAG 3-576

A. Debye Approximation

1) Sheath Equations

Of the two limiting approximations of the fluid model, the

Debye Approximation contains the simpler field equations. The

Equation of Motion can be integrated exactly and yields scalar,

exponential relations between the particle densities and the

electrostatic potential. These relations are then used in Poisson's

Equation to produce a single equation for the electrostatic potential.

Once Poisson's Equation is solved, the particle densities can be used

in the Equation of Continuity to determine the velocity field of the
fluid flow.

The field equations of the Debye Approximation (eO<<kT) as

derived in the warm plasma model (ref. 9) are as follows:

V2_ - (_/(_,d) 2 = 0 (Poisson's Equation)

V.(NV) = 0 (Equation of Continuity) (1)

VN/N = -qVO/kT (Equation of Motion)

where • is the electrostatic potential, _d is the Debye Length, N is

the number density of a species (electrons or ions), q is the charge

of the species particles and V is the velocity field associated with a

species. The solution of the third of these equations is Nion =

Noexp(-eO/kT) and Nelectron = Noexp(eO/kT), where e is the

magnitude of the charge on the electron. Using eO/kT<<l, for the

electrons and Nion = No for the ions, the above form of Poisson's

Equation results. For the ions, the assumed zero velocity field
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trivially solves the Equation of Continuity. For the electrons, with

the assumption of irrotational flow, i.e., V xV = 0, the Equation of

Continuity becomes: V2F+V(eO/kT)-VF = 0 where VF = V.

These results may be put in dimensionless form with the

substitutions: _.dV = V', eq_/kT = _' and n = N/No, where No is the

species density in the ambient plasma. The velocity units are

arbitrary and the velocity V' is derived from V'F' = V'. With these

definitions the field equations become:

(v,)2a,' = a,' (Poisson's Equation)

V'2F'+V'_'.V'F = 0 (Equation of Continuity for Electrons) (2)

n = exp(q_') (Relative Electron Density)

2) Numerical Solutions

A two-dimensional, numerical model achieving solutions of

these equations using Central-Difference methods was developed in

the summers of 1987 and 1988. Electrostatic potential

distributions and electron flow fields have been modeled for both

the edge and the strip geometries. In the case of the strip

geometry, an analytical solution to Poisson's Equation was obtained.

During the summer of 1989 these solutions were fully implemented

and compared with output from NASCAP/LEO.

To accomplish this comparison, NASCAP/LEO was run using

three-dimensional objects spanning the full length of the 33 point

axis of the inner grid. The objects were a long rectangular bar and

a set of adjacent, plane rectangles. Cross-sections through the

centers of these objects provided two-dimensional data against

which runs of our model were compared.

A computer program written by a student assistant, Bishwa

Basnet, was used to read the NASCAP/LEO output files and put

them in a form suitable for contour plotting with S, which is the

graphics package we use to plot the output from the fluid model.

Thus, contour plots of our output and the NASCAP/LEO output were
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made directly comparable. Results of the NASCAP/LEO electrostatic

potential calculations were generally in agreement with fluid model

results except in regions of the sheaths near the corner of the edge

in the edge geometry or near the surface voltage discontinuity in

the strip geometry. In such regions, our calculations were able to

yield somewhat more detail than those of NASCAP/LEO.

3) NASCAP/LEO Code Comparisons

Figures 2-5 show comparisons in the Debye Approximation

between NASCAP/LEO electrostatic potentials and electrostatic

potentials calculated using the fluid model. In these figures

voltages have been normalized to kT. Plasma parameters used to
calculate these results are as follows:

Electron Temperature = 0.1 e.v.

Electron Density = 106/cc

Debye Length = 0.00235 meters

Fig. 2 is a plot of NASCAP/LEO output based on a cross section

through the center of a rectangular bar of dimensions 43.D x 27LD x

1 I XD. The width of the bar spans 12 of the available 16 grid units

in the inner grid of the NASCAP/LEO, the height spans 6 grid units

and the length spans all 32 of the available units. Thus the upper

surface of the comer shown in Fig. 2 is spanned by 7 grid points

and the right side is spanned by 4 grid points. The solution has

been set to zero on the boundary of the first outer grid.

Fig. 3 shows a solution of the NASCAP/LEO-type Poisson's

Equation (eq. 9) using the fluid model. Our calculations reflect a

grid of 21 x 21 points and 33.D = one grid space. Thus our grid is

identical to that used by NASCAP/LEO in Fig. 2. One can see that,

except for the placement of the zero boundary (our zero is on the

upper and right hand extreme boundaries), the equipotential lines

in the two figures fall almost exactly on top of each other. There is

excellent agreement between our calculations and NASCAP/LEO's in

these figures.

Fig. 4 is a plot of NASCAP/LEO output based on four strips

occupying the median plane of the inner grid. Each strip is 8 grid
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spaces wide and 16 grid spaces long. The voltages of the strips
alternate, beginning with a low voltage strip and ending with a high
voltage strip. The arrangement is shown below in Fig. 6. Fig. 4
shows a vertical cross-section centered on the discontinuity
between the first low-voltage strip and the first high-voltage strip
and perpendicular to the line of discontinuity. Only 9 grid points
span the x axis of the calculation space, which is shown by the box.

Y

X
I

Voo-Vo Voo+Vo Voo-Vo Voo+Vo

Fig. 6

Fig. 5 shows a calculation based on the same grid adopted in

Fig. 4 but using the analytical solution of Poisson's Equation for the

electrostatic potential in the strip geometry (ref. 6). The two

contour plots are similar. They differ in the placement of the

potential zero, which is at a numerically determined distance above

the surface in Fig. 4 and is at infinity for the calculation shown in

Fig. 5. This artificially compresses the equipotentials toward the

surface in Fig. 4 relative to those in Fig.5.

The lack of good resolution in both figures leads to some

differences near the voltage discontinuity. Poor resolution is forced

by the the need to have four adjacent strips in the inner grid of

NASCAP/LEO's calculation space. We were unable to achieve

convergent runs of NASCAP/LEO using only two strips. Even using

the longest available dimension of the inner grid, only 8 grid units

per strip could be accommodated. The analytical solution shown in

Fig.5 is, in principle, exact but was calculated and plotted on the

sparse grid of NASCAP/LEO for comparison purposes. Thus, Fig. 5

has the same lack of resolution as does Fig. 4.

The results plotted in Figures 2-5 suggest that, in the Debye

Approximation, our numerical approach replicates that of



NASCAP/LEO within the precision of that model and for the

geometries we have chosen to analyze. Where resolution is

sufficient in both approaches, agreement is good. Where

differences occur, poor resolution prohibits taking the differences

too seriously.

4) Fluid Model Runs

Calculations in both the strip geometry and in the edge

geometry using the fluid model were fully reported in our March,

1989 Interim Report (ref. 9).

B. Child-Langmuir Approximation

1) Sheath Equations

The Child-Langmuir Approximation describes sheath regions

where eO >> kT. Since kT << 1 e.v. in LEO this approximation is the

appropriate one for modeling high-voltage solar arrays deployed

there. Although the Equation of Motion (eqs. 2) can be integrated

exactly, as in the Debye Approximation, the result is a quadratic

relationship between the magnitude of the fluid velocity and the

electrostatic potential. This is the relationship used in

NASCAP/LEO. However, no scalar relationship between the

electrostatic potential and the charge density arises in more than

one dimension, as is assumed in NASCAP/LEO. Thus, in the fluid

model, Poisson's Equation does not separate from the other

equations as an equation for the electrostatic potential alone. The

equations of motion and continuity remain coupled to Poisson's

Equation and must be solved simultaneously with Poisson's

Equation.

If attention is focused mainly on that part of the sheath

nearest the high voltage surfaces, where ions are excluded, the ion

contribution to the sheath equations can be ignored and the sheath

becomes an electron sheath. The field equations for the electron

sheath in the Child-Langmuir Approximation, as derived in the

warm plasma model (ref. 6) and assuming irrotational flows, are as
follows:
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V2_ - eN/eo= 0 (Poisson's Equation)

V.(NV) = 0 (Equation of Continuity) (3)

mV2/2-e_ =0 (Equation of Motion - Energy Eq.)

where N is the electron density, V is the electron velocity field and

• is the electrostatic potential. The ion density differs from zero

only on the outer boundary region of the sheath where the charge

density term in Poisson's Equation must reflect the presence of the

ions. Notice that the Equation of Motion also expresses conservation

of energy for single particles.

The appropriate scale length in the high-voltage sheath is the

Child-Langmuir length, DCL, given by:

DCL 2 = (4eo/9)(4g/ekT)l/2Oo3/2/No (4.a)

In comparison to the Debye length, XD:

DCL 2/_,D 2= (4/9)(4g)l/2(eOo/kT)3/2 (4.b)

where _o is the surface potential, i.e., the value of the voltage on

the surface of the edge or the average voltage of the alternating

strips. One can see that, if eOo>>kT, the Child-Langmuir length.

greatly exceeds the Debye length. Thus, because the typical high-

voltage sheath must be calculated out from the surfaces at least one

Child-Langmuir length and only a finite number of calculational

grid points can be deployed in such a calculation, features of the

sheath or the surface having the scale of the Debye length are

unlikely to be resolved. A sheath thickness of the order of DCL is

suggested by the result that DCL is the thickness of the one-
dimensional sheath above a uniformly biased, plane surface.

As in the Debye Approximation, dimensionless forms of the

sheath equations can be found. However, the appropriate norm

voltage is not kT/e but tl)o and the appropriate length scale is not _,D

but DCL. The transformation to dimensionless units is accomplished
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by making the substitutions: DCLV = V', O' = O/Oo, V' = V/Vo and n

= N/No, where Vo = (2COo/m), m is the mass of an electron and V' is

derived from V'= V'F'. With these definitions, and using eq.(4.b),

the field equations become:

(V')20 '- (4/9y)(kT/eOo)n = 0 (Poisson's Equation)

nV'2F'+V'n.V'F ' = 0 (Equation of Continuity) (5)

(V') 2 = q)' (Equation of Motion - Energy Eq.)

where T- (kT/eOo)3/2/(4_) 1/2 = 4kD2/9DcL 2 (6)

{Note: A numerically more useful form of the Equation of Continuity

is V 2(gF') + (g-2)V'g-V'F - FV'2g = 0, where g -In(n).}

2) Numerical Solutions

In the summer of 1989, computer programs were written to

solve the Child-Langmuir equations in two dimensions in the edge

and strip geometries. A self-consistent field calculation for the

electron density, electrostatic potential and electron velocity field of

the electron sheath was planned.

In the self-consistent approach a trial electrostatic potential is

chosen. The relative electron density is then deduced from

Poisson's Equation and used in the Equation of Continuity to

produce the electron velocity potential. The magnitude of the

velocity is calculated throughout the grid from the velocity

potential and the Energy Equation is used to produce a new

electrostatic potential. The new electrostatic potential and the trial

electrostatic potential are compared. If sufficiently different, they

are mixed and introduced as a new trial potential beginning a new
calculation cycle.

To produce a trial electrostatic potential, we have chosen to

solve the non-linear Poisson's Equation that arises using

NASCAP/LEO's relation connecting the charge density, velocity field
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and the electrostatic potential in the sheath (ref. 8) As given by
Katz, Mandell and Cooke in unnormalized units, this relationship is:

p =-(_o_/3.D2)[I + (4_)1/2(e_/kT)3/2]-1 (7)

When eO/kT << kT, this expression reduces to the correct form of

the net charge density in the Debye Approximation, namely, p =-

Noe2O/kT. When eO/kT >> kT, the expression gives the electron

charge density in the one-dimensional, Child-Langmuir

Approximation, namely, p =-Noe/(4_eO/kT) 1/2.

Whereas the Debye limit of eq.(7) can easily be shown to be

correct in more than one dimension, this is not true of the Child-

Langmuir limit. As pointed out above, there is no reason to expect

that a scalar relationship between p and • exists in more than one

dimension for this limit. Thus, while we shall use the NASCAP/LEO

relationship to develop the trial potentials in our Child-Langmuir

analysis, we expect that the self-consistent procedure will produce

different final potentials. Differences should be most evident near

intrinsically multi-dimensional regions of the sheath such as

surface shape and voltage discontinuities.

If eq.(7) is written in the dimensionless units adopted in

eqs.(5), the result is an expression for the relative electron density:

n = 7O'(eOo/kT)/[7 + (_,)3/2] (8)

Using this result, Poisson's Equation becomes:

(V')2_ ' = (4_'/9)/[7 + _,3/2] (9)

To solve this equation numerically, we linearize the right-

hand side, viz:

f(u) m U/[7+U3/2] = 3Uo5/2/2(y+Uo3/2) 2 + {("/-Uo3/2/2)/('Y+Uo3/2)2}U (10)

Using this expansion, we solve (V')2(I) ' = (4/9)f(_') iteratively.

Initially the function _'o is the solution of Laplace's Equation
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(f = 0) using the chosen boundary conditions. After one iteration
the solution, _', is compared with the starting function, _'o. If
sufficiently different they are mixed and the mixture introduced as
_'o in a new iteration. This process continues until agreement
between _' and _'o is obtained to within a chosen precision.

As Katz, et al, have found (ref. 7), to achieve numerical

stability it is necessary to replace the value of y in eq.(9) with a

larger value. Since y = 4 XD2/9DcL 2, this has the effect of replacing XD

as the intrinsic scale length of the sheath in regions where eO<<kT.

Thus, in such regions the model becomes unable to resolve features

on the scale of Z.D. As Katz, et al, point out, however, the grid

spacing for a sheath surrounding a high voltage object is typically

chosen to be many times larger than a Debye length and there is

little point in trying to model features smaller than a grid spacing

A second potential instability arises when the coefficient of u

in the second term on the right-hand side of eq.(10) is positive.

Katz, et al, deal with this instability by setting this term to zero at

any point at which this occurs. We deal with it by choosing the

potential on the outer boundary so that the maximum electron

relative density obtains on the outer boundary of the calculation

space. This guarantees that the coefficient, which is the derivative

of the relative electron density, is negative everywhere.

Numerical solutions to eqs.(5) have been found in both the

edge and strip geometries starting with NASCAP/LEO-type

electrostatic potential solutions resulting from eq.(9) and producing

the fields, n, F and _' through one iteration cycle. Solutions of

eq.(9) have been compared with output of the NASCAP/LEO code

for the electrostatic potential. As expected, the electrostatic

potentials are quite comparable in regions that are not sensitively

multi-dimensional. Near the comer in the edge geometry and near

the voltage discontinuity in the strip geometry, however,

differences are readily seen.
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3) Boundary Conditions

Symmetry permits the solutions on the boundaries

perpendicular to the biased surfaces to be "mirrored", e.g.,

equipotential lines cross these boundaries perpendicularly. Such

boundaries include the two side boundaries in the strip geometry

and the x and y axes in the edge geometry.

For solutions of Poisson's Equation, the normalized

electrostatic potential is equal to one on the comer surface in the

edge geometry (Fig. 1.b). The normalized outer boundary potential

is 0.01, initially. This means that, on a 100 Volt comer, the outer

boundary would be at 1 Volt. Similarly, the average potential of

the strip surface (Fig. 1.a) is also set to one and the upper boundary

to 0.01, initially.

With the outer boundary potential value set initially to 0.01, a

minimum value of y is found that produces convergence of eq.(9).

The potential on the outer boundary is then set equal to O b'- =

(2y)2/3- This guarantees that (y- _'3/2/2) < 0 everywhere. Solutions

are then recalculated using this value of Oh'.

The above process results in an outer boundary potential of

2-4 Volts for a 100 Volt surface. Thus, since both the ion and

electron thermal kinetic energies in the ambient plasma are much

less than 2 e.v., the sheaths modeled in this way are fully Child-

Langmuir in character and the ions are. effectively excluded from

the sheath. There are no regions in the sheath where e*<<kT since

the electrostatic potential rises monotonically as one proceeds
inward from the outer sheath to the biased surfaces.

The boundary conditions on the velocity potential, F', are

similar to those on the electrostatic potential. The same translation

and reflection symmetries obtain for F' as for _' and so the

boundaries perpendicular to the biased surfaces are, again,

"mirrored". However, although definite values of *' are imposed on

the biased surfaces and the outer boundary, the values of F' on

these surfaces are not known a-priori. What is known is the

magnitude of the gradient of F' derived from the Energy Equation,
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(V'F')2 = .'. To deal with these boundary conditions, the value of F'

on the outer boundary is set to zero in our calculations and the

equation for F' iterated until the Energy Equation is satisfied

everywhere on the biased surfaces. This requires a delicate

numerical approach and much computer time.

4) The Self-Consistent Cycle

Once F' is found using the density function, n, calculated by

taking the Laplacian of the NASCAP/LEO-type electrostatic

potential, a new electrostatic potential is calculated from (V'F') 2 = .'

This potential is compared with the NASCAP/LEO-type potential at

every point in the calculation space. Further processing of the self-

consistent cycle should consist of testing the agreement of these

two potentials to some precision and, if they are sufficiently

different, mixing the potentials, taking the Laplacian of the result so

as to produce a new relative electron density, n, solving the

Equation of Continuity for a new velocity potential, F', and finding

yet another electrostatic potential via the Energy Equation.

Even after experience with only one processing cycle, it is

clear that the self-consistent process is fraught with numerical

instabilities. Solving the Equation of Continuity to high precision is

especially important. For calculations on a 41x41 point grid, a

single flow solution can consume many minutes on our VAX 8200

computer. For this reason, self-consistent solution cycles beyond

the first cycle have not yet been seriously attempted. However,

over one cycle it has been found that the input and output

electrostatic potentials differ significantly near the voltage

discontinuity in the strip geometry for high-modulation cases and

almost everywhere in the edge geometry. This means that the

NASCAP/LEO-type electrostatic potentials are not good solutions of

the fluid model equations, as suspected.

5) Comparisons With NASCAP/LEO

Figures 7&8 show comparisons in the edge geometry between

an electrostatic potential calculated using NASCAP/LEO and an

electrostatic potential calculated using the fluid model. We have

replotted the NASCAP/LEO code output using S. In these figures,
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the surface voltages have been normalized to one. Plasma
parameters used to calculate these results are as follows:

Electron Temperature = 0.1 e.v.
Electron Density = 106/cc
Debye Length = 0.00235 meters
Surface Voltage = 100 Volts

Child-Langmuir Length = 0.525 meters

As in the Debye Approximation plots (Figs. 2-5), the

NASCAP/LEO plot of Fig. 7 has a zero on the surface of the 1st outer

grid. The zero in Fig.8 is beyond the calculation space, the

boundary value of the potential having been chosen to maximize

the electron density on the boundary. One sees that the

equipotentials in Figs. 7&8 are nearly coincident although the

NASCAP equipotentials are somewhat compressed toward the

surface in the outer sheath, no doubt due to the position of the zero
surface.

Comparisons of the fluid model and NASCAP/LEO are not

reported for the strip geometry because of our inability to obtain

numerically stable runs of NASCAP/LEO using the object shown in

Fig. 6 with Voo = 100 Volts.

6) Fluid Model Runs

a) Strip Geometry

Calculations for the strip geometry have been made using the

plasma parameters given above. Adjacent strips have voltages, Voo

plus or minus a percentage modulation. With Voo = 100 Volts a

10% modulation means that the higher voltage strips are at 110

Volts and the lower voltage strips are at 90 Volts. All calculations

have been done on a 41x41 point grid and, as in the Debye case,

voltages have been normalized through division by Voo.

Calculations for modulations of 0%, 10%, 20%, 30%, 40%, 50%,

60%, 70% and 90% have been made. Figures 9-38 show the results

of calculations having 0%, 10%, 30%, 50%, 70% and 90% modulations.

The figures are arranged in groups of five. The first figure in each
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group shows the solution of Laplace's Equation. This solution is

used as the initial electrostatic potential in the iteration of the

NASCAP/LEO-type, non-linear Poisson's Equation (eq. 9), the

solution of which is shown in the next figure.

The third figure shows the normalized electron charge

density, n = N/No, derived by taking the Laplacian of the Poisson

solution and multiplying it by the appropriate factor (see eqs. 5).

The fourth figure is the solution of the Equation of Continuity

for the velocity potential, F'. Fluxes over the outer boundaries and
onto the biased surfaces have been calculated for these solutions

and used to check particle conservation. These results are
summarized in Table I.

The fifth and last figure in each group shows the output

electrostatic potential derived from the Energy Equation (also

denoted as derived from the Velocity Potential). This solution is to

be compared to the NASCAP/LEO-type, Poisson potential. If these

potentials are essentially the same, one can conclude that the

NASCAP/LEO-type potential is a solution of the two-dimensional

sheath equations presented here. Significant differences between

these solutions would suggest that the NASCAP/LEO-type potential

is not a solution of the equations presented. If differences occur

most prominently near the surface voltage or shape discontinuities,

one may infer that the one-dimensional charge-potential relation

assumed in NASCAP/LEO is asserting its presence.

Figures 9-13 show strip-geometry solutions having no

modulation. Thus, this case is one-dimensional. Fig. 9 shows a

Laplace solution that falls-off linearly with distance above the

uniformly charged surface. This is to be expected since the solution

of Laplace's Equation in one dimension is a straight line. Fig. 10

shows the NASCAP/LEO-type potential. One can see that space

charge pulls the equipotential surfaces toward the biased surface
somewhat.

Fig. 11 shows the relative electron density. Because the

relative electron density is proportional to the Laplacian of the

electrostatic potential, here it is proportional to the second
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derivative of the potential with respect to y. One can see that the
second derivative is near zero just above the surface and increases
as one goes toward increasing y values.

Fig. 12 shows the velocity potential, F', derived from the
Equation of Continuity. The velocity field is the gradient of this
potential. One can see that the velocities are larger near the surface
than in the outer sheath. This agrees with the behavior of the
analytical solution of the Equation of Continuity in one dimension,
namely, nV = const. Where n is small V will be large and where n
is large V will be small.

Fig. 13 shows the output electrostatic potential derived from
the velocity potential. Superposition of Figures 10 and 13 shows
almost exact agreement between the NASCAP/LEO-type
electrostatic potential and the new electrostatic potential. Were we
interested merely in the one-dimensional sheath above a biased
surface, the self-consistent field process could be considered to
have converged after only one cycle. 'This result is to be expected

since the NASCAP/LEO-type solution should be correct in one

dimension.

Figures 14-18 show solutions for a 100 Volt surface with a

10% modulation. In these figures one can begin to see the effects of

the differing biases of the strips. Notice that the NASCAP/LEO-type

Poisson solution is not very different from the Laplace solution.

The electron densities in the sheath appear so small that, for rough

purposes, the electrostatic potential may be approximated by the

Laplace solution. Notice also that the velocity potential shows a

particle flow only slightly skewed toward the higher voltage strip.

Apparently, 10% modulation does not change the downward flow of

electrons appreciably. Finally, notice that the NASCAP/LEO-type

potential (Fig. 15) and the new electrostatic potential (Fig. 18)

remain very close.

Figures 19-38 show results in the strip geometry for a 100

Volt surface having modulations of 30%, 50%, 70% or 90%. These

figures show, as expected, that increasing modulation causes

increased skewing of the potentials toward the higher voltage strip.

This is also true of the particle fluxes, although the effect is much
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less than would be expected by looking at the velocity potential

plots and the electron density plots separately. Because flux is the

product of velocity and density, the high velocities shown over the

higher voltage strip are almost completely compensated by the low

densities there. Table I summarizes the associated particle flux

calculations. Notice in Table I that overall particle loss is extremely

small in all cases. This means that the Equation of Continuity is

being solved quite well in these runs.

Comparisons of the Laplace and the Poisson solutions at each

value of modulation show that the Laplace solutions are

increasingly poor approximations to the electrostatic potential in

the sheath as the modulation is increased. Further, comparison of

the NASCAP/LEO-type potentials with the potentials derived from

the velocity potentials shows increasing disagreement as the

modulation is increased. The assumption presented here is that

this is due to the breakdown of the one-dimensional charge

density-electrostatic potential relationship (eq.7) embedded in the

NASCAP/LEO-type solutions.

It should be pointed out that, because they differ significantly

after one cycle of the self-consistent process, neither the

NASCAP/LEO-type potentials nor the potentials calculated

subsequently from the velocity potential can be correct solutions of

the fluid model equations. Correct solutions require convergence of

the self-consistent field process over, perhaps, many cycles.

Achieving this awaits a better computing environment.

b) Edge Geometry

Figures 39-63 show results of runs made using the edge

geometry. In all cases the electrostatic potentials are normalized to

the potential on the surface of the edge, 100 Volts. The voltage on

the outer boundary is set initially at 1 Volt but is adjusted upward

to as much as 4 volts for calculational stability. The plasma

parameters are the same as given in part (B.5) above.

The figures are arranged in groups of five as above: Laplace

solution, NASCAP-type solution, Relative Electron Density, Velocity

Potential and Electrostatic Potential from the Velocity Potential.
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Because there is no easy way to gradually approach the geometry
of a corner, a series of solutions starting with a one-dimensional
solution, as was presented for the strip geometry, will not be
presented. Instead, we present a selection of calculations for
different sized edges and out to different distances.

The biased structure shown is 1/4 of a cross section through
an infinitely long conducting bar. For such an object, a square

calculation space is inappropriate because the equipotential lines of

the electrostatic potentials would be pulled artificially toward the

upper right-hand corner of the calculation space, although they

would quickly become nearly circular as one proceeded inward.

Because at large distances one expects the sheath to approximate a

circle in cross section, anyway, the calculation space has been

truncated to a circle of 40 grid spaces in radius and centered at the

point (0,0). Thus the high circularity of potentials of the maximum

possible radius is also artificial but less so than equipotentials

calculated using square outer boundaries.

Figures 39-43 show calculations for 1/4 of a square

conducting bar 0.346 meters on a side. With DCL = .5247 meters,

the calculation space goes out to 1 DCL from the bar above its flat

surfaces. The grid is 41x41 points. The voltage on the outer

boundary is 2.47 Volts. The effective scale length determined from

the adjusted value of _, in the outer sheath is 2 grid spaces. The

Debye Length is 0.135 grid space so that features of the order of a

Debye length are unresolved. Table II indicates that good particle

conservation was achieved for the flow shown in Fig. 42.

Notice that the NASCAP-type solution (Fig.40) is nearly the

same as the Laplace solution (Fig.39). However, the electrostatic

potential derived from the velocity potential (Fig.43) is pulled very

much inward relative to the NASCAP-type potential. These two

potentials are very different, a condition implying that neither is

the correct solution of the fluid model equations. The correct
solution must lie in-between these solutions.

Figures 44-48 show results for a 0.92m x 0.66m bar. The

calculation space is the same as that of the previous figures. Again

the Laplace and NASCAP-type solutions are similar although the
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solutions on the lower right boundary are artificially pushed
toward the bar. In this direction the sheath thickness is forced to
be less than 1 DCL.

As in the previous, case, particle conservation is obtained to

high precision. Also, the ratio of fluxes to the top and to the side of

the comer are very nearly the same as the ratio of the extents of

these surfaces, i.e., 14/10. As before, the electrostatic potential

derived from the velocity potential is much pulled-in relative to the

NASCAP-type potential.

Figures 49-53 show the same results as do Figures 39-43 but

a different scale is used. The grid spacing is 0.05 DCL in these

figures rather than 0.033 DCL. Thus the bar's dimensions are 0.525

m on a side. The calculation space goes out to 1.5 DCL = 0.787 m

above the flat surfaces of the bar. For calculational stability, the
outer boundary has been set to 4.3 Volts.

Notice in the first two of these figures that the Laplace and

NASCAP-type solutions are no longer similar. As expected, the

Laplace solution extends out to the calculational boundary but the

NASCAP-type solution of Fig. 50 terminates before this, at about

0.95 DCL. The sheath radius compares to a radius of 0.86 DCL in the

NASCAP-type solution of Fig. 40. The slightly greater sheath radius

in Fig. 50 is perhaps due to the larger boundary voltage, which

would force the equipotentials outward somewhat. Nevertheless,

the calculations shown in Fig. 50 have resulted in a sheath of the

expected, finite thickness, namely, about 1 DCL.

Reference to Table II shows that the flow of Fig. 52 conserves

particles very well. Fig. 53 shows, again, that the final electrostatic

potential and the NASCAP-type potential are very different. The

wiggles on the outer equipotential in Figures . 53 and 49 do not

represent real variation. They are probably due either to plotting

artifacts, the fact that a smooth, circular boundary cannot be

achieved on a square grid of points or budding numerical
instabilities in the outer sheath.

Figures 54-58 show the same kind of information as do

Figures 44-48 but with a grid spacing of 0.05 DCL. Thus the bar size
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in these figures is 0.735 m x 0.525 m. The calculation space is the
same as that of Figures 44-48. The outer boundary voltage is 4.29
Volts.

One sees in these figures that the NASCAP-type solution
shows a sheath of definite radius, about 1 DCL, and that the final
potential disagrees strongly with the NASCAP-type potential. As

before, the Equation of Continuity is well solved and particles are

conserved to high precision. Note, particularly, that in Fig. 55 the

outer equipotentials are very circular even though the calculation

space boundary is quite a bit further out. Indeed, this circularity is

not lost until one approaches to within about 0.5 DCL of the corner.

Figures 59-63 show calculations for a square bar of the same

dimensions as that of the bar shown in Figures 39-43, i.e., 0.66 DCL

on a side. In these figures, however, the calculation space is

extended to 1.56 DCL above the fiat surfaces of the bar. For

numerical stability, the effective scale length of the outer sheath

has been increased from 2 to 2.1 grid spaces. This means that the

outer boundary electrostatic potential is 4.2 Volts.

One sees in the NASCAP-type solution of Fig. 60 that the

sheath extends out only to about 0.71DcL above the flat surfaces.

This is to be compared to Fig. 40, in which the sheath extends out to

about 0.86 DCL but the calculation space extends only out to 1 DCL.

This difference may be due to proximity of the calculation

boundary to the outer sheath surface in Fig. 40, i.e., the boundary

may be pulling the sheath outward. The sheath shown in Fig. 60 is

less affected by the boundary, which is farther away. One should

note here once again that the boundary of the calculation space is a

circle, 40 grid spaces in radius and centered at (0,0).

As in the other cases presented, Fig. 62 shows a flow that

conserves particles quite well (see Table II). Also, the final

potential is very much different from the NASCAP-type solution, as
before.
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C. Summary and Conclusions

The modeling of the Debye Approximation electron sheaths

in the edge and strip geometries was completed in the summer of

t989. Electrostatic potentials in these sheaths were compared to

NASCAP/LEO solutions for similar geometries. Velocity fields,

charge densities and particle fluxes to the biased surfaces were
calculated for all cases.

The major conclusion to be drawn from the comparisons of

our Debye Approximation calculations with NASCAP-LEO output is

that, where comparable biased structures can be defined and

sufficient resolution obtained, these results are in general

agreement.

Numerical models for the Child-Langmuir, high-voltage

electron sheaths in the edge and strip geometries were constructed

irt--1-9fl9. Electrostatic potentials were calculated for several cases in

each of both geometries. Velocity fields and particle fluxes were

calculated. The self-consistent solution process was carried through

one cycle and output electrostatic potentials compared to NASCAP-

type input potentials.

The major conclusions to be drawn from the Child-Langmuir

analysis of the strip and edge geometries are as follows:

1) Equations for the electron sheath that connect the electrostatic

potential, electron density and velocity field can be derived from a

multi-dimensional, warm fluid plasma model. These equations

reduce to those used in the NASCAP-LEO code in one dimension.

2) NASCAP-type electrostatic potentials, which are solutions of the

multi-dimensional Poisson's Equation but using the one-

dimensional relation between charge density, velocity and

electrostatic potential, are not compatible with the warm plasma

fluid model near points of severe voltage or shape discontinuity.

The incompatibility becomes more pronounced as voltage or shape

discontinuities are made larger.
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3) If particle velocity fields are assumed irrotational, the Equation
of Continuity becomes an equation for the velocity potential, which
can be solved to high precision. This requires imposing a non-
linear boundary condition on the biased surface. The Continuity
Equation approach to determining particle flow is an alternative to
particle tracking and has the feature that it embodies particle
interactions during the flow.

4) Sheath thicknesses of the NASCAP-type solutions in the edge

geometry are approximately equal to but somewhat less than the

expected value of one Child-Langmuir length. However, the

electrostatic potentials calculated from the velocity fields have
much smaller sheath thicknesses. If the self-consistent solution

cycle were to be pursued to convergence, one might expect that the
final solutions would show intermediate sheath thicknesses. This

would imply generally thinner sheaths than are predicted by

NASCAP/LEO-type solutions.
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Table I

Particle Fluxes for the Strip Geometry

100 Volt Surface +/- Modulation

(arbitrary units)

Fig.# % Mod. LFlux

12 0 .1783

1 7 1 0 .1763

22 30 .1748

27 50 .1722

32 70 .1669

37 90 .1514

RFlux

1783

1757

1756

1745

1722

1671

THux %NC %RtS_ft

.3565 -.03 0

.3519 -.03 -.2

.3503 -.03 .2

.3467 0 .6

.3391 0 1.6

.3187 +.06 5.0

LFlux = integrated normal flux on lower left (low voltage) boundary

RFlux = integrated normal flux on lower right (high voltage) boundary

TFlux = integrated normal flux on upper boundary

%NC = 100*[1-(lflux+rflux)/topflux] = % non-conservation of flux

%RtShift = 100*(rflux-lflux)/topflux = % of flux shifted to higher voltage
surface
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Table II

Particle Fluxes for the Edge Geometry
(arbitrary units)

H_# CTFIux CCFlux CRHux TTFlux TRFlux

42 .084 .0063 .084 .088 .088

47 .117 .0063 .085 .104 .105

52 .084 .0063 .084 .088 .088

57 .117 .0063 .085 .104 .105

62 .059 .0063 .059 .063 .063

CTFlux = integrated normal flux onto top of edge

CCFlux = flux to comer

CRFlux = integrated normal flux onto right side of edge

TTFlux = integrated normal flux crossing top boundary

TRFlux = integrated normal flux crossing right boundary

%NC = 100*[1-(total outer boundary flux/total flux to edge) = % non-
conservation of flux
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